

ÇANKAYA UNIVERSITY Graduate School of Natural and Applied Sciences New Course Proposal Form

This form should be used for either an elective or a compulsory course being proposed and curricula development processes for a graduate curriculum at Çankaya University, Graduate School of Natural and Applied Sciences. Please fill in the form completely and submit the printed copy containing the approval of the Director of Institute. Upon the receipt of the form, it will be forwarded to the Academic Board for approval. Incomplete forms will be returned to the Department. The approved form is finally sent to the President's office for approval by the Senate.

Part I. Basic Cour	se Information						
Department Name	MECHANICAL ENGINE	ERING			Dej Co	pt. Numeric de	8 7
Course Code	M E 6 2 8	Number of Weekly Lecture Hours	3	Number of Weekly Lab/Tutorial Hours	0	Number of Credit Hours	3
Course Web Site	http:// me628.cankaya.edu.	tr			ECTS Credit		
Course Name This information will appea	r in the printed catalogs and on the web	online catalog.					
English Name	Continuum Mechanics						
Turkish Name	Sürekli Hal Mekaniği						
Maximum 60 words. The course covers th	what is covered during the semester. Thing the following topics: Continuum ental laws and equations. Lin	m theory. Essential n					rmation
Prerequisites (if any) Give course codes and check all that are applicable. Co-requisites	Consent of the Instructor	2 nd Senior Standing 2 nd		3rd Give others, if any.		4 th	
(if any)							
Course Type Check all that are applicable	Must course for dept. Must	st course for other dept.(s)	⊠ Ele	ective course for dept.	Elective	course for other dept.(s)	ı

Course Classification Give the appropriate percentages for each category.								
Category	Mathematics & Natural Sciences	Engineering Sciences	Engineering Design	General Education	Other			
Percentage	30	40	30					

Part II. Detailed Course Information

Course Objectives

Explain the aims of the course. Maximum 100 words.

- 1. Introduce notion of continuum and the length scales for the applicability of continuum mechanics,
- 2. Introduce vector and tensor algebra and equip them with skills for analysis of vector and tensor valued functions, e.g. differentiation and integration,
- 3. Introduce basic kinematics for a deforming body and various deformation measures and their rates,
- 4. Concept of stress and various stress measures as work conjugates of deformation measures,
- 5. Balance laws which govern the motion of a deformable continuum. Lagrangian and Eulerian description,
- 6. Mathematical restrictions to constitutive theories, e.g. stress strain relationship.

Learning Outcomes

Explain the learning outcomes of the course. Maximum 10 items.

- 1. Ability to apply the tensor notation,
- 2. Ability to treat general stresses and deformations in continuous materials,
- 3. Ability to formulate and solve specific technical problems of displacement, strain, and stress,
- 4. Ability to analyze the stresses and deformations of simple geometries under arbitrary load in solids.

Textbook(s) List the textbook(s), if any, and oth	ner related main course materials.			
Author(s)	Title	Publisher	Publication Year	ISBN
G.T. Mase, R.E. Smelser, G.E. Mase	Continuum Mechanics for Engineers, 3 rd Edition	CRC Press	2010	978-1-4200- 8538-9

Reference Books List the reference books as suppl	ementary materials, if any.			
Author(s)	Title	Publisher	Publication Year	ISBN
P. Chadwick	Continuum Mechanics: Concise Theory and Problems	George Allen & Unwin, Ltd.	1999	978-0-486- 40180-5

Teaching Policy

Explain how you will organize the course (lectures, laboratories, tutorials, studio work, seminars, etc.

Three hours lecture per week and homework

Laboratory/Studio Work

Give the number of laboratory/studio hours required per week, if any, to do supervised laboratory/studio work, and list the names of the laboratories/studios in which these sessions will be conducted.

Computer Usage
Briefly describe the computer usage and the hardware/software requirements in the course.

	Course Outline List the topics covered within each week.					
Week	Topic(s)					
1-3	Continuum Theory Essential Mathematics					
4-6	3. Stress Principles					
7-9	4. Kinematics of Deformation and Motion					
10-12	5. Fundamental Laws and Equations					
13-14	6. Linear Elasticity					

Grading Policy List the assessment tools and their percentages that may give an idea about their relative importance to the end-of-semester grade.								
Assessment Tool	Quantity	Percentage	Assessment Tool	Quantity	Percentage	Assessment Tool	Quantity	Percentage
Homework			Case Study			Attendance		
Quiz	5	30	Lab Work			Field Study		
Midterm Exam	1	30	Class Participation			Project		
Term Paper			Oral Presentation			Final Exam	1	40

ECTS Workload			
List all the activities considered under the ECTS. Activity	Quantity	Duration (hours)	Total Workload (hours)
Attending Lectures (weekly basis)	14	3	42
Attending Labs/Recitations (weekly basis)			0
Preparation beforehand and finalizing of notes (weekly basis)	14	2	28
Collection and selection of relevant material (once)	14	1	14
Self-study of relevant material (weekly basis)	14	2	28
Homework assignments	5	5	25
Preparation for Quizzes	5	4	20
Preparation for Midterm Exams (including the duration of the exams)	1	10	10
Preparation of Term Paper/Case Study Report (including oral presentation)			
Preparation of Term Project/Field Study Report (including oral presentation)			
Preparation for Final Exam (including the duration of the exam)	1	20	20
TO	187/25		
		ECTS Credit	7.5

Total Workloads are calculated automatically by formulas. To update all the formulas in the document first press CTRL+A and then press F9.

Program Qualifications vs. Learning Outcomes

Consider the below program qualifications determined in terms of learning outcomes of all the courses in the curriculum and capabilities. Look at the learning outcomes of this course given above. Relate these two using the Likert Scale by marking with X in one of the five choices at the right.

					Contribution					
No	Program Qualifications	0	1	2	3	4				
1	Knowledge about the basic science, mathematics and engineering sciences at high level.				X					
2	In depth knowledge, in his/her area of research including the latest development in the related area.				X					
3	Ability to reach the recent information in his/her research area and has the highest level of proficiency in the methods and skills necessary to do the research.				X					
4	Ability to perform comprehensive studies to develop a new scientific method that bring about novelty to science or technology or a technological product/process, or to apply a known method to a new field.			X						
5	Ability to perceive, design, practice and bring to completion an original research process independently; manage this process.									
6	Ability to work in teams and independently, and to lead a team; cooperate and collaborate with experts in the field.		X							
7	Contribution to scientific and technological literature by publishing the output of his/her academic studies in respected academic media.									
8	Ability to carry out cutting edge research and gather data, and transmit the results of researches to the community, with scientific objectivity and ethical responsibility.		X							
9	Ability to perform critical analysis, synthesis and evaluation of the ideas and developments in his/her profession.			X						
10	Ability to communicate with scientific and social communities in written and verbal form effectively; ability to establish written, verbal and visual communication and discussion in a foreign language at least at level C1 of the European Language Portfolio.									

Contribution Scale to a Qualification: 0-None, 1-Little, 2-Medium, 3-Considerable, 4-Largest

Part III New Course Proposal Information

State only if it is a new course

Is the new course replacing a former course in the curriculum?	Yes	No ⊠	Former Course's Code	Former Course's Name
Is there any similar course which has content overlap with other courses offered by the university?	Yes	No 🖂	Most Similar Course's Code	Most Similar Course's Name

☐ Summer							
er □ Fall ⊠ Spring							
nts Expected to Take urse							
Justification for the proposal Maximum 80 words							
This lecture is proposed to give the students ability of solving problems related to kinematics of deformation and motion, using tensorial notation and apply the knowledge for solution of the common case studies.							
Date							
21.09.2021							
Decision Number							
Date							
D							
Decision Number							
\]							

Meeting Number

Decision

Number

Senate Meeting Date